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Abstract. The basic subtraction game is well-known example in combinato-

rial game theory. Many variants which introduce significantly more complexity

have been introduced and studied in recent years. We examine a variant of
the basic subtraction game which introduces randomness into the outcomes of

the moves chosen by each player, and prove some general properties about it

as well as a few theorems about more specific games.

1. Introduction

The basic subtraction game is simple: two players begin with a pile of k counters.
Alternating turns, each player may choose to remove a number of counters from
the pile from the subtraction set S = {1, 2, 3}. The goal of the game is to be the
player to remove the last counter.

Winning strategies for this game, and all games in which each player chooses
from a fixed subtraction set, are well-known [1]. For the above game, the moving
player always has a winning strategy if the number of counters remaining is not a
multiple of four, otherwise the moving player is guaranteed to lose. Similar results
for other subtraction sets may also be solved for.

A number of variants of this game exist, including dynamic variants, in which the
subtraction set changes based on the number of counters remaining [4]; blocking
variants, in which the opposing player may block certain moves for the moving
player [2, 3], and multi-player variants, in which there are more than two players
[3, 5]. However, all of these versions of the game do not involve any randomness.

In our variant, we replace the subtraction set with a set of (different) dice.
The moving player chooses a die from this set, and rolls it to determine how many
counters to take from the pile. This is a substantial change, as the players no longer
have direct control over their moves, instead only indirectly through their choice of
dice. By introducing randomness, we also move away from the combinatorial end
of game theory, which is only equipped to study games with perfect information.

This paper is organized as follows: we will begin by formally describing the sto-
chastic subtraction game, introduce a few general properties, and finally prove two
theorems about a particular simple example. Afterwards, we will discuss remaining
open questions as well as avenues for future work.
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2. Notation and general properties

We begin by formally restating the rules of the stochastic game. As before,
we will have two players and a pile of k counters. However, instead of the sub-
traction set we will define the dice set D = {D1, D2, . . . , Dm}, where each die
Di = (di1, di2, . . . , din): is identified by its faces. On each turn, the moving player
selects a die Di from the dice set D, and a face is randomly selected from that die
with uniform distribution (i.e., the die is rolled). The moving player then takes the
number of counters on the selected face from the pile. As before, the goal of the
game is to be the player to remove the last counter.

For the sake of simplicity, we will assume that all faces of a given die are distinct
and take positive integer values, and will additionally assume that faces are picked
uniformly. We do not, however, assume that all dice have the same number of faces.

Because randomness is involved, we cannot construct a perfect winning strategy,
so we instead consider win probabilities. We define p(k) to be the moving player’s
probability of winning with k counters remaining, assuming that the moving player
will play to maximize this probability for every subsequent move, and the other
player will play to minimize this probability (this is known as the expectiminimax
algorithm). As well, we let q(k) be the winning probability of a player when the
other player is moving with k counters remaining.

Further, let p(D, k) represent the moving player’s winning probability when
choosing die D. Thus, the moving player will maximize p(D, k) over all avail-
able dice. We define d(k) to be the best choice of die for the moving player with k
counters remaining.

The proposition below, which we will refer to frequently, follows immediately
from the rules definitions above and formalizes them further. We leave the verifi-
cation as an exercise to the reader.

Proposition 1. The following properties hold for all games:

d(k) = argmax
D∈D

p(D, k) (1)

p(k) = max
D∈D

p(D, k) = p(d(k)) (2)

q(k) = min
D∈D

q(D, k) (3)

p(Di, k) =
1

ni

∑
d∈D

q(k − d) (4)

q(Di, k) =
1

ni

∑
d∈D

p(k − d) (5)

q(Di, k) = 1− p(Di, k) (6)

p(Di, k) ≤ p(k) (7)

One point of particular interest is (6) above, which allows us to convert state-
ments about the opposing player’s using particular dice to statements about the
moving player. In fact, we have symmetry in the winning probabilities for each
player.

Proposition 2. In every game, q(k) = 1− p(k) for all k.
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Proof.

1− p(k) = 1−max
D∈D

p(D, k)

= min
D∈D

1− p(D, k) since 0 ≤ p(·) ≤ 1.0

= min
D∈D

q(D, k) = q(k) Prop. 1 (6)

□

One useful fact will come from a particular class of dice: dice whose indices are
an additively shifted version of another die in the set. This proposition will be
critical for the proofs in the next section.

Proposition 3. Let D1 = (d1, d2, . . . , dn) and D2 = (d1 + i, d2 + i, . . . , dn + i) for
i ∈ Z be in an arbitrary dice set D. Then in the (D, k) game,

p(D1, k) = p(D2, k + i)

.

Proof.

p(D2, k + i) =
1

n

∑
d∈D2

q((k + i)− d)

=
1

n
(q ((k + i)− (d1 + i)) + q ((k + i)− (d2 + i)) + . . .+ q ((k + i)− (dn + i))

=
1

n
(q(k − d1) + q(k − d2) + . . .+ q(k − dn)

= p(D1, k)

□

We finish this section by outlining some of the relevant questions pertaining
to this game. Aside from the obvious problem of finding an efficient method to
compute p(·), we also observe two interesting phenomena. The first is that, it
appears, that p(k) → 1

2 as k → ∞ for all choices of dice set so long as at least
one die has more than two faces (i.e., some amount of chance is involved). While
intuitive, the proof of this is non-obvious.

The second interesting phenomenon is that it is possible for a particular die never
to be optimal for all numbers of counters remaining. The next section will focus on
proving this for two simple cases, but a list of necessary and sufficient conditions
for this to occur in general would be ideal.

3. Theorems for a particular game

The classical subtraction game uses a subtraction set S = {1, 2, 3}. To extend
this to the stochastic case, a natural choice of die set is D = {(1, 2), (2, 3), (1, 3)},
where we have three dice with two faces each. We will refer to each of these dice
as D1, D2, and D3, respectively.

From the definitions above we may inductively (albeit inefficiently) compute the
winning probabilities for each die with every number of counters remaining, as seen
in Table 1.
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k p((1, 2), k) p((2, 3), k) p((1, 3), k) d(k) p(k)

1 1.0000 1.0000 1.0000 1 1.0000
2 0.5000 1.0000 0.5000 2 1.0000
3 0.0000 0.5000 0.5000 2 0.5000
4 0.2500 0.0000 0.2500 1 0.2500
5 0.6250 0.2500 0.3750 1 0.6250
6 0.5625 0.6250 0.4375 2 0.6250
7 0.3750 0.5625 0.5625 2 0.5625
8 0.4062 0.3750 0.4062 1 0.4062
9 0.5156 0.4062 0.4844 1 0.5156
10 0.5391 0.5156 0.4609 1 0.5391
11 0.4727 0.5391 0.5273 2 0.5391
12 0.4609 0.4727 0.4727 2 0.4727
13 0.4941 0.4609 0.4941 1 0.4941
14 0.5166 0.4941 0.4834 1 0.5166
15 0.4946 0.5166 0.5054 2 0.5166

Table 1. Optimal play for the {(1, 2), (2, 3), (1, 3)}, k} game for
k ≤ 15. The highlighted cells illustrate the equality of p((1, 2), 2)
and p((2, 3), 3).

In the table, we can see the reflection of Proposition 3 by the diagonal equality
of the first two columns. For example, we see that p((1, 2), 2) = p((2, 3), 3). The
following lemma states this fact for this particular game, and may be verified by
direct application of Proposition 3.

Lemma 1. In the ({(1, 2), (2, 3), (1, 3)}, k) game, we have

p(D1, k) = p(D2, k + 1)

Again looking at the table, the more striking observation is that d(k) ̸= D3 for
all k ≤ 15, that is, D3 = (1, 3) is never the best choice of die. It turns out that this
is true for all k. To prove this, we will use induction combined with Lemma 1, as
well as some computation that is mainly dealt with in the following lemma.

Lemma 2. In the ({(1, 2), (2, 3), (1, 3)}, k) game, we have
p(D3, k) ≤ p(D1, k) ⇐⇒ p(k − 3) ≥ p(k − 2)

p(D3, k) ≤ p(D2, k) ⇐⇒ p(k − 1) ≥ p(k − 2)
Proof.

p(D1, k) =
1

2
(q(k − 1) + q(k − 2))

p(D2, k) =
1

2
(q(k − 2) + q(k − 3))

p(D3, k) =
1

2
(q(k − 1) + q(k − 3))

Thus,

p(D3, k) ≤ p(D1, k) ⇐⇒ q(k − 3) ≤ q(k − 2)

p(D3, k) ≤ p(D1, k) ⇐⇒ q(k − 1) ≤ q(k − 2)

The result follows by applying Proposition 2. □
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Theorem 1. In the (D1, k) game, D3 is never the best choice, that is, d(k) ̸= D3

for all k.

Proof. By Lemma 2, it suffices to show that p(k−2) ≤ p(k−3) or p(k−2) ≤ p(k−1)
for all k. We proceed by induction on k, the initial number of counters remaining.

Base cases k ≤ 3: Verified by computation (see table).
Inductive step: Assume that d(j) ̸= D3 for all j ≤ k. Then we know that

d(k − 2) ̸= D3, so d(k − 2) is either D1 or D2.
If d(k − 2) = D1, then we have

p(k − 2) = p(D1, k − 2) = p(D2, k − 1) ≤ p(k − 1).

Likewise if d(k − 2) = D2, we have

p(k − 2) = p(D2, k − 2) = p(D1, k − 3) ≤ p(k − 3).

In both cases one of the inequalities is satisfied, so we are done. □

Before discussing this result, we will prove another similar result where we replace
D3 with a die with faces (1, 2, 3). For the sake of brevity we omit the probability
table, but we observe that the new die is also never the best choice. The method
of proof will be similar; the proof of the lemma is omitted (verify by computation),
and the inductive proof is similar.

Lemma 3. In the ({(1, 2), (2, 3), (1, 2, 3)}, k) game, we have

p(D3, k) ≤ p(D1, k) ⇐⇒ p(k − 1) + p(k − 2) ≤ 2p(k − 3)

p(D3, k) ≤ p(D2, k) ⇐⇒ p(k − 2) + p(k − 3) ≤ 2p(k − 1)

Theorem 2. In the ({(1, 2), (2, 3), (1, 2, 3)}, k) game, D3 is never the best choice,
that is, d(k) ̸= D3 for all k.

Proof. Assuming by induction that d(k−2) ̸= D3, we again have two cases to show.
Rather than verifying individual inequalities, in each case we will leverage both at
once.

If D(k − 2) = D1, then we may find separately that

p(k − 1) + p(k − 2) = p(k − 1) + p(D1, k − 2)

= p(k − 1) + p(D2, k − 1)

≤ p(k − 1) + p(k − 1)

= 2p(k − 1),

so if p(k−1) ≤ p(k−3), then p(k−1)+p(k−2) ≤ 2p(k−3) as desired. Likewise,
we have

p(k − 2) + p(k − 3) = p(D1, k − 2) + p(k − 3)

= p(D2, k − 1) + p(k − 3)

≤ p(k − 1) + p(k − 3)

so if p(k − 3) ≤ p(k − 1), by substitution we get p(k − 2) + p(k − 3) ≤ 2p(k − 3).
Since p(k − 1) must be either greater than or less than p(k − 3), we have proven
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the statement for d(k − 2) = D1. The same holds reasoning symmetrically for
d(k − 2) = D2, so we are done. □

These theorems are useful as small examples that inform general heuristics about
which kinds of dice are preferable. In general, we see that dice with smaller variance
in the faces tend to be optimal more frequently than other kinds of dice. The
theorems show an example of each: compared to (1, 2) and (2, 3) the (1, 3) die
has the same number of faces but larger variance, while the (1,2,3) die has more
variance through more faces. Neither die is ever best compared to the other two.
We also see another general pattern reflected in these theorems.

Conjecture 3. If all dice in a set D have faces less than or equal to n, and D′ =
{(1, 2), (2, 3), . . . .(n− 1, n)} ∈ D, then only dice from D′ will be chosen.

We expect that verifying this is not difficult, but we have not yet completed a
proof.

4. Conclusion and future work

As stated earlier, the three main questions for this game are identifying con-
ditions for a die never to be optimal, proving the convergence of p(k) to 1

2 , and
finding a closed-form solution for p(k) in a general game. We still have a ways to
go before finding general results, and proving results for specific examples may be
helpful.

There are many avenues of continued work on this game. One natural generaliza-
tion is to define a die as a discrete (or ultimately continuous) random variable and
consider games resulting from those dice sets. There are alterations to the game
rules, for example, allowing consecutive turns, that are trivial in the deterministic
game but nontrivial in the stochastic game. Finally, many of the other deterministic
variants mentioned in the introduction directly apply to the stochastic game.
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